

Ponatinib vs Asciminib as Post–Second-generation Tyrosine Kinase Inhibitor Therapy for Chronic-phase Chronic Myeloid Leukemia: A Matching-adjusted Indirect Comparison

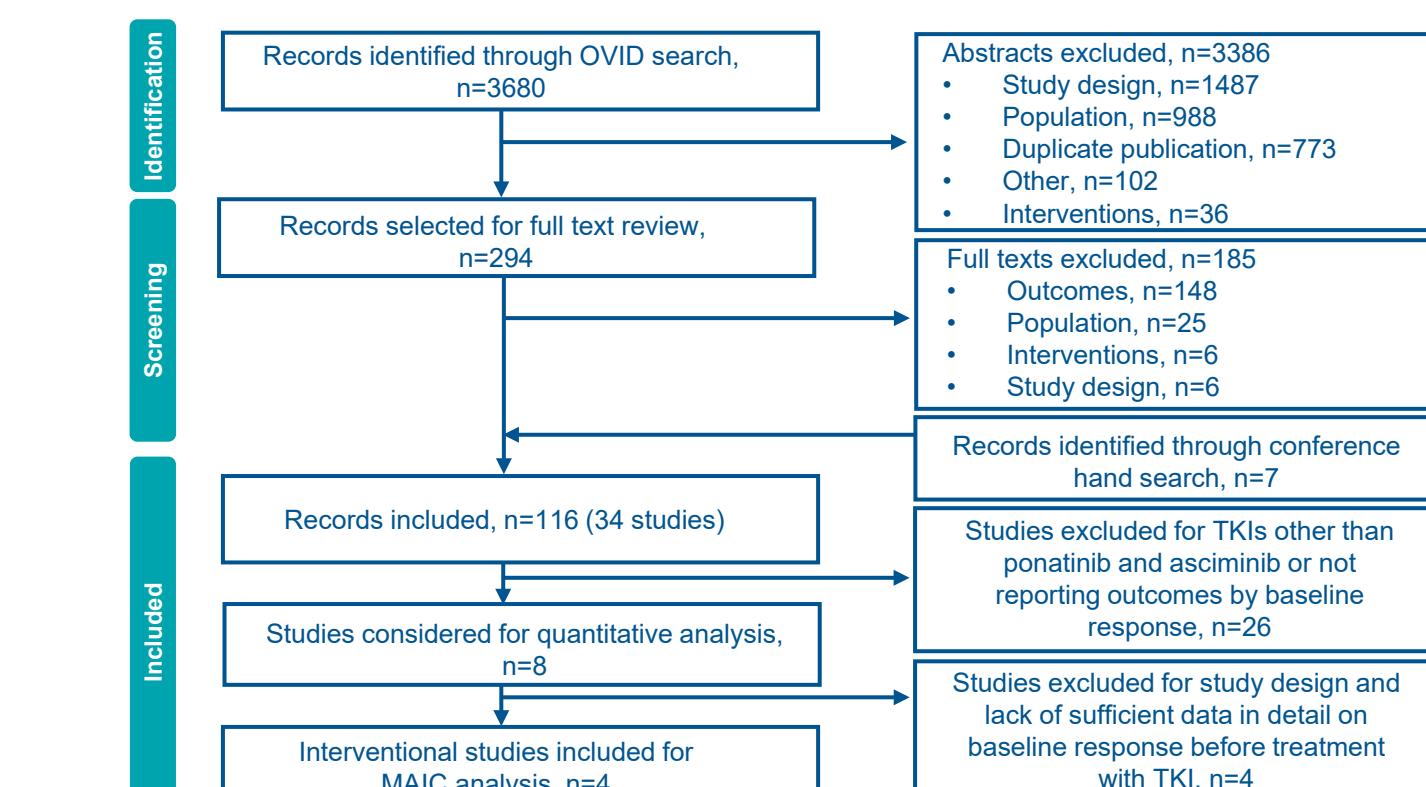
Valentin Gutierrez-Garcia, MD,¹ Fei Huang, MPH, PhD,² Ajibade Ashaye, MD, MPH, MSc, MBA,² Mehul Dalal, PhD,² Victor Laliman-Khara, MSc,³ Massimo Breccia, MD,⁴ Megan Rutherford, MSc,³ Hoora Moradian, MBA, PhD,³ Petros Patos, MD,⁵ Elias Jabbour, MD⁶

¹Ramón y Cajal University Hospital, Madrid, Spain; ²Takeda Development Center Americas, Inc., Lexington, MA, USA; ³Cytel Inc., Waltham, MA, USA; ⁴Department of Translational and Precision Medicine, Sapienza University, Rome, Italy; ⁵Incyte Biosciences International Srl, Morges, Switzerland; ⁶The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Background

- Ponatinib is a BCR:ABL1 tyrosine kinase inhibitor (TKI) that potently inhibits native BCR:ABL1 and all reported single-resistance mutations, including T315I¹
- Asciminib is an ABL myristoyl pocket (STAMP) inhibitor that targets the kinase activity of BCR:ABL1, including ABL1 kinase domain mutations such as T315I²
- Ponatinib and asciminib are both approved for third-line therapy in chronic-phase chronic myeloid leukemia (CP-CML) and are the only drugs approved for patients with a T315I mutation in the United States^{3,4}
- There are currently no head-to-head trial data comparing ponatinib with asciminib in CP-CML
- We conducted a matching-adjusted indirect comparison (MAIC) analysis to compare the efficacy of ponatinib versus asciminib in patients with relapsed and refractory CP-CML who failed ≥ 1 prior second-generation TKI or with a T315I mutation

¹Asciminib is not specifically indicated for patients with Philadelphia chromosome-positive CP-CML with the T315I mutation in Europe⁵


Methods

- A systematic literature search of medical literature databases (including MEDLINE, EMBASE, and the EBM Reviews Collection) was conducted to identify clinical trials investigating ponatinib or asciminib in patients with resistant or intolerant CP-CML who failed ≥ 1 second-generation TKI or had a T315I mutation
 - English language publications from January 1, 2006, to October 26, 2021, were identified
 - Studies reporting complete cytogenetic response (CCyR), major molecular response (MMR), or BCR:ABL1 transcript level on the international scale (BCR:ABL1^{IS} $\leq 1\%$) for patients with CP-CML treated with TKIs whose disease was resistant or who were intolerant to ≥ 1 second-generation TKI or who had T315I mutation
- MAIC analysis with individual patient-level data with ponatinib was used to balance baseline characteristics
 - Key prognostic factors and effect modifiers originally identified for population adjustment included age, sex, race, Eastern Cooperative Oncology Group (ECOG) performance status, number of prior TKI treatments, baseline BCR:ABL1^{IS} transcript levels, and resistance or intolerance to prior TKIs
 - However, as no common treatment arms were identified across ponatinib and asciminib trials, an unanchored MAIC was used, with adjustment of treatment effect modifiers and prognostic factors
 - The aim was to correct imbalances in as many factors as possible while maximizing effective sample size (defined as the number of unweighted patients that would yield the same level of uncertainty in the estimates as the weighted cohorts)
- Cumulative rates of BCR:ABL1^{IS} $\leq 1\%$ and MMR (BCR:ABL1^{IS} $\leq 0.1\%$) were compared between ponatinib and asciminib in patients without a baseline response (BCR:ABL1^{IS} $> 1\%$)
 - Response data were assessed at 12 months to ensure data maturity, and a sensitivity analysis was conducted at 6 months

Results

- Four publications were selected for the MAIC to compare ponatinib and asciminib among resistant or intolerant patients with no baseline response and patients with T315I mutation for assessment of BCR:ABL1^{IS} $\leq 1\%$ and MMR (Figure 1; Table 1)
- Ponatinib: Phase 2 OPTIC (NCT02467270)⁶ and PACE (NCT01207440)^{7,8} trials
- Asciminib: Phase 3 ASCEMBL (NCT03106779)^{9,10} trial and a phase 1 randomized trial (NCT02081378)⁸

Figure 1: PRISMA flow diagram of studies included in MAIC analysis

References

- Cortes JE, et al. N Engl J Med. 2013;369:1783–96.
- Rea D, et al. Blood. 2021;138:2031–41.
- Cortes J, et al. Blood. 2021;138:2042–50.
- Iclusig [package insert]. Cambridge, MA: Takeda Pharmaceutical Company Limited; 2022.
- Scemblix [package insert]. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2021.

- Scemblix [SmPC]. Nuremberg, Germany: Novartis Pharma GmbH; 2024.
- Cortes J, et al. Blood. 2021;138:2042–50.
- Cortes J, et al. Blood. 2018;132:393–404.
- Hughes TP, et al. N Engl J Med. 2019;381:2315–26.
- Rea, et al. EHA Library. 2022;357019:Abstr S155

Table 1: Study summary and patient characteristics of included studies

Study	Study design	Intervention	N	Age, yr, median (range)	Exposure to prior regimens (resistance/intolerance)	T315I mutation	CCyR at study entry	Study follow-up or treatment duration, mo (range)
Phase 1 asciminib ⁸	Open-label, phase 1, dose-escalation trial	Asciminib: 10–200 mg PO BID 80–200 mg PO QD	141	Non-T315I: 56 (25–88) T315I: 54 (23–76)	Resistance or intolerance to ≥ 2 prior TKIs	Included (n=28)	Included	Non-T315I: Median follow-up: 72 (0.1–167) T315I: Median follow-up: 37 (0.7–167)
ASCEMBL ^{2,9}	Open-label, phase 3 RCT	Asciminib: 40 mg PO BID	157	52 (24–63)	Resistant or intolerance to ≥ 2 prior TKIs or intolerance to previous TKI therapy at time of screening	Excluded	Included	Median follow-up: 27.6 Median duration of treatment: 23.7 (0.0–46.3)
OPTIC ⁶	Open-label, phase 2, single-arm trial	Ponatinib: 45 mg PO QD and dose reduction to 15 mg PO QD upon achievement of $\leq 1\%$ BCR:ABL1 ^{IS}	94	47 (19–81)	Resistance or intolerance to ≥ 2 prior TKIs	Included (n=25)	Excluded	Median follow-up: 32 (1–57) Median duration of treatment: 19.6 (0.1–51.3)
PACE ^{1,7}	Phase 2, single-arm trial	Ponatinib: 45 mg PO QD	270	58 (18–94)	Resistance or intolerance to dasatinib or nilotinib	Included (n=64)	Excluded	Median follow-up: 56.8 (0.1–73.1) Median duration of treatment: 32.1 (0.1–73.0)

BID, twice daily; PO, orally; QD, once daily; RCT, randomized clinical trial

- To ensure model convergence, a backward approach was employed until the most influential variables were retained based on their impact on achieving MMR and their role in addressing the heterogeneity of treatment effects (Table 2)
- The variable "resistant to prior TKI" could not be included in the MAIC model, as there was not a sufficient number of intolerant patients in the ponatinib trials
- The effective sample size of ponatinib patients decreased from 359 to 304.97 after matching
- For patients with T315I mutation, the MAIC analysis was conducted in the phase 1 asciminib, OPTIC, and PACE trials
- After matching, the covariates used for adjustment were balanced between cohorts

Table 2: Baseline characteristics of asciminib trials versus MAIC-unadjusted and MAIC-adjusted ponatinib trials

	Phase 1 asciminib	ASCEMBL asciminib	ASCEMBL and phase 1 asciminib ^b	OPTIC and PACE ponatinib-unadjusted	PACE and PACE matching-adjusted ^b
Sample size, N	141	157	298	359	Effective sample size ^a : 304.97 OPTIC: 81.65 PACE: 223.32
Mean age, yr (SD)	55.5 ^d	51.0 (13.5)	52.6 (13.5)	55.2 (15.6)	52.6 (13.5)
Sex, male, %	54.5	52.2	53.0	53.2	53.0
Race, White, %	UNK	75.2	75.2	79.9	75.2
ECOG performance status 1 or 2, %	27.3	19.1	22.8	28.1	22.8
Mean prior TKIs (SD)	2.7 ^e	2.5 (0.7)	2.6 (0.7)	2.6 (0.7)	2.6 (0.7)
Resistant to prior TKI, %	NR	60.5	NA	84.4	Not adjusted
BCR:ABL1 ^{IS} level $\geq 10\%$, %	43.3	61.8	55.2	76.6	55.2

NR, not reported; NA, not applicable; SD, standard deviation; UNK, unknown.^aThe weighted results from phase 1 and ASCEMBL trials were used as the reference of the MAIC analysis.^bMAIC analysis was conducted by using patient-level data from OPTIC and PACE trials that were matched against the combined results of phase 1 asciminib and ASCEMBL trials in all of the patient characteristics listed in the table.^cEffective sample size: calculated as the square of the summed weights divided by the sum of the squared weights.^dOnly median age was available in phase 1 asciminib.^ePrior TKI number in the phase 1 asciminib that was estimated based on the published categorical data

Acknowledgments

We thank all the patients and their families, and the investigators and staff at all clinical sites, for their participation in the study. This study is sponsored by Takeda Development Center Americas, Inc. Medical writing support for the development of this poster, under the direction of the authors, was provided by Corey Burgin, PhD, of Peloton Advantage, LLC, an OPEN Health company, and funded by Takeda Development Center Americas, Inc., Lexington, MA, and compiled with the Good Publication Practice (GPP) guidelines (DeTora LM, et al. Ann Intern Med 2022;175:1298–1304).

- After MAIC adjustment, BCR:ABL1^{IS} $\leq 1\%$ and MMR response was slightly but not significantly more favorable for ponatinib treatment in patients without the T315I mutation in most comparisons (Table 5)

Table 5: Comparison of BCR:ABL1^{IS} $\leq 1\%$ and MMR among patients with CP-CML without T315I mutation following MAIC adjustment

Question	To conduct a MAIC analysis to compare the efficacy of ponatinib vs asciminib in patients with relapsed and refractory CP-CML who failed ≥ 1 prior second-generation TKI or with a T315I mutation									
Results										
• Following MAIC adjustment, ponatinib consistently outperformed asciminib for the efficacy endpoints of BCR:ABL1 ^{IS} $\leq 1\%$ and MMR by both 6 and 12 months										
Comparison of BCR:ABL1 ^{IS} $\leq 1\%$ and MMR among patients with CP-CML without baseline response following MAIC adjustment										
Intervention	ASCEMBL + phase 1	PACE + OPTIC unadjusted	PACE + OPTIC MAIC-adjusted	Rate difference MAIC-adjusted ^{a,b}						
Sample size, N	229	343	304.97	Ponatinib vs asciminib						
6 months, % (95% CI)	41.95 (35.20–48.71)	37.02 (31.18–42.87)	42.37 (36.38–48.35)	4.95 (4.50–14.41)						
BCR:ABL1 ^{IS} $\leq 1\%$	21.36 (15.95–26.78)	17.56 (12.95–22.16)	23.84 (18.20–29.49)	2.48 (−5.35–10.31)						
MMR	(23.94–36.06)	(21.76–30.00)	(22.52–34.49)	(−10.01–7.02)						
12 months, % (95% CI)	48.78 (41.94–55.62)	42.37 (36.38–48.35)	53.55 (46.94–60.16)	4.77 (−4.74–14.25)						
BCR:ABL1 ^{IS} $\leq 1\%$	30.00 (23.94–36.06)	21.76 (16.76–25.75)	28.51 (22.52–34.49)	−1.49 (−10.01–7.02)						
MMR										

- ^aThe difference is statistically significant when 95% CI does not contain zero.^bA positive difference favors ponatinib, while a negative difference favors asciminib.

- After adjustment for key baseline characteristics, BCR:ABL1^{IS} $\leq 1\%$ and MMR rates by 6 and 12 months were statistically higher with ponatinib than asciminib in patients with relapsed and refractory CP-CML without a baseline response in most comparisons
- Rate differences for BCR:ABL1^{IS} $\leq 1\%$ and MMR were up to 9.73% and 7.62% higher for ponatinib, respectively

Key Takeaway

In patients with the T315I mutation and without baseline response, ponatinib outperformed asciminib for both efficacy endpoints evaluated by 6 and 12 months (Table 4)

- Rate differences for BCR:ABL1^{IS} and MMR were up to 43.54% and 47.37% higher for ponatinib, respectively

Table 4: Comparison of BCR:ABL1^{IS} $\leq 1\%$ and MMR among patients with CP-CML with T315I mutation following MAIC adjustment

	Phase 1	ASCEMBL	PACE	OPTIC	
Intervention	Asciminib				